Fostering Scientific Literacy: Establishing Social Relevance via the Grand Challenges
Abstract
Numerous studies and polls suggest the general public’s understanding of science and scientific literacy remain woefully inadequate despite repeated calls for improvement over the last 150 years. This inability to improve scientific literacy significantly is a complex problem likely driven by a number of factors. However, we argue that past calls and efforts for improving scientific literacy have failed to: 1) articulate a truly meaningful justification for society to foster a scientifically literate public; 2) provide a rationale that motivates individuals of diverse backgrounds to become scientifically literate; 3) consider the impact of personal perspective, e.g. values, beliefs, attitudes, etc., on learning; and 4) offer a relevant and manageable framework in which to define scientific literacy. For instance, past calls for improving scientific literacy, e.g. the U.S. is behind the Soviets in the space race, U.S students rank below country X in math and science, etc., have lacked justification, personal motivation and a comprehensive framework for defining scientific literacy. In these cases, the primary justification for improving science education and scientific literacy was to regain international dominance in the space race or to advance global standing according to test results. These types of calls also articulate short-term goals that are rendered moot once they have been achieved. At the same time, teaching practices have commonly failed to consider the perspectives students bring to the classroom. Many STEM faculty do not address issues of personal perspective through ignorance or the desire to avoid controversial subjects, e g. evolution, climate change. We propose that the ‘grand challenges’ (e.g., energy, climate change, antibacterial resistance, water, etc.) humankind currently faces provides a compelling framework for developing courses and curricula well-suited for improving scientific literacy. A grand challenge paradigm offers four distinct advantages. First, it defines an enduring and meaningful rationale for society to invest resources in educational programs that promote scientific literacy. Second, it provides an educational context designed to engage individuals and motivate them to learn. Third, the nature of grand challenges provides mechanisms for addressing other affective barriers to individual learning that are commonly associated with controversial science-societal issues. Fourth, a grand challenge approach provides a framework to identify the concepts and processes of science a scientifically literate person should understand. Based on our experiences, we propose grand challenge science literacy (GCSL) courses or curricula are based on two primary foundations: the nature of science and the unifying concepts of science. Complementing this foundation is the science necessary to understand the grand challenge. To illustrate how science can contribute to crafting a just, equitable and sustainable solution, a GCSL course must also incorporate non-STEM perspectives, e.g. economics, politics. Finally, the personal perspectives learners bring to the classroom must be explicitly considered throughout the course.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMED31B0668L
- Keywords:
-
- 0800 EDUCATION