The growth history of the Lago Della Vacca (Southern Adamello Massive, Italy) intrusion from field observations, thermal and rheological modelling
Abstract
The Lago Della Vacca granitoid is an intrusive body emplaced at about 4-6 km in up to 1 My. The core of the body is characterised by the presence of dyke-like structures, enclave-swarms and randomly distributed enclaves, which appear undeformed. Enclaves become oblate with the short axis perpendicular to the foliation, which, in turn follows the margin of the plutonic body (John and Blundy, 1993). Geothermometry and experimental data have been used to constrain the temperature of injection of the mafic component (1273-1323 K), the temperature of the host granitic magma (1173-1223), and to characterise the evolution of crystallinity with temperature for both magmas (Blundy and Sparks, 1992). Based on these data thermal and rheological modelling have been combined to interpret the growth and deformation history of the Lago della Vacca intrusive body. The pluton was modeled as a series of incrementally emplaced nested cylinders with 1D-cylindrical conductive heat transfer. The evolution of temperature and melt fraction distribution in the pluton and country rock were determined and used as input parameters for the rheological modelling. The rheology of each magma depends on the viscosity of the melt and, more importantly, on crystallinity. Field observations suggest that the mafic magma was injected as dykes. Their partial or total disaggregation produced mafic enclaves. The presence of randomly distributed enclaves in the core of Lago Della Vacca body indicates that convection was active in this portion of the intrusion. The undeformed nature of the enclaves in this region also implies that the contrast in temperature between host magma and mafic material produced a sudden (hours) rheological inversion with the mafic magma becoming more viscous than the felsic end-member. In these conditions, the enclaves would be transported passively by the felsic-host without suffering any substantial deformation. Thermal modelling indicates that to maintain the core of the pluton above solidus temperature between injections requires either fast emplacement or high initial temperatures of the country rocks. The latter is unlikely for emplacement depths of 4-6 km and as a consequence we infer duration of emplacement up to few hundred thousand years. The wider range of zircon ages may reflect combined intrusion and thermal relaxation times. The extremely flattened enclaves at the rim of the pluton are the result of deformation at lower temperature as the core inflates. As magmas cool the crystallinity of host become as high as the enclaves, resulting in a small viscosity contrast between them, which can be seen as a Window of Mutual Deformability (WMD). Further straining results in a homogeneous deformation and flattening of the enclaves parallel to the margins.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.V43B2378R
- Keywords:
-
- 3618 MINERALOGY AND PETROLOGY / Magma chamber processes;
- 3690 MINERALOGY AND PETROLOGY / Field relationships;
- 8439 VOLCANOLOGY / Physics and chemistry of magma bodies