Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing
Abstract
Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood.
Aims: To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations.
Methods: We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed.
Results: Using Fourier spectra and Δ-variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the
Conclusions: The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- March 2010
- DOI:
- arXiv:
- arXiv:0905.1060
- Bibcode:
- 2010A&A...512A..81F
- Keywords:
-
- hydrodynamics;
- ISM: clouds;
- ISM: kinematics and dynamics;
- methods: numerical;
- methods: statistical;
- turbulence;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- 28 pages, 20 figures, published as Highlight Paper in A&