The Rokhlin Property for Automorphisms on Simple C*-Algebras
Abstract
Let $\mathcal{A}$ be the class of unital separable simple amenable $C$*-algebras $A$ which satisfy the Universal Coefficient Theorem for which $A\otimes M_{\texttt{P}}$ has tracial rank zero for some supernatural number $\texttt{p}$ of infinite type. Let $A\in \mathcal{A}$ and let $\alpha$ be an automorphism of $A.$ Suppose that $\alpha$ has the tracial Rokhlin property. Suppose also that there is an integer $J\geq 1$ such that $[\alpha^J]=[\mbox{id}_A]$ in $KL(A,A)$, we show that $A\rtimes_{\alpha}\mathbb{Z}\in \mathcal{A}.$
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2009
- DOI:
- arXiv:
- arXiv:0911.2867
- Bibcode:
- 2009arXiv0911.2867H
- Keywords:
-
- Mathematics - Operator Algebras;
- 46L55;
- 46L35;
- 46L40
- E-Print:
- 7 pages