A global mathematical investigation of a predator-prey model
Abstract
We construct a global bifurcation diagram of the plane differential system $$ {l} \dot x = x(1-x)-x y/(a+x^2), \dot y = y(\delta-\beta y/x), x(t)>0, y(t)>0, a>0, \delta>0, \beta>0, $$ which describes the predator-prey interaction.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2009
- DOI:
- 10.48550/arXiv.0911.1007
- arXiv:
- arXiv:0911.1007
- Bibcode:
- 2009arXiv0911.1007T
- Keywords:
-
- Mathematics - Dynamical Systems;
- Nonlinear Sciences - Chaotic Dynamics;
- Quantitative Biology - Populations and Evolution;
- 34C;
- 37G;
- 92D
- E-Print:
- 11 pages, 7 Postscript figures