Asymptotics of supremum distribution of a Gaussian process over a Weibullian time
Abstract
Let $\{X(t):t\in[0,\infty)\}$ be a centered Gaussian process with stationary increments and variance function $\sigma^2_X(t)$. We study the exact asymptotics of ${\mathbb{P}}(\sup_{t\in[0,T]}X(t)>u)$ as $u\to\infty$, where $T$ is an independent of $\{X(t)\}$ non-negative Weibullian random variable. As an illustration, we work out the asymptotics of the supremum distribution of fractional Laplace motion.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2009
- DOI:
- arXiv:
- arXiv:0909.3667
- Bibcode:
- 2009arXiv0909.3667A
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Statistics Theory
- E-Print:
- Published in at http://dx.doi.org/10.3150/10-BEJ266 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)