On the $U_{q}(osp(1|2n))$ and $U_{-q}(so(2n+1))$ Uncoloured Quantum Link Invariants
Abstract
Let $L$ be a link and $\Phi^{A}_{L}(q)$ its link invariant associated with the vector representation of the quantum (super)algebra $U_{q}(A)$. Let $F_{L}(r,s)$ be the Kauffman link invariant for $L$ associated with the Birman--Wenzl--Murakami algebra $BWM_{f}(r,s)$ for complex parameters $r$ and $s$ and a sufficiently large rank $f$. For an arbitrary link $L$, we show that $\Phi^{osp(1|2n)}_{L}(q) = F_{L}(-q^{2n},q)$ and $\Phi^{so(2n+1)}_{L}(-q) = F_{L}(q^{2n},-q)$ for each positive integer $n$ and all sufficiently large $f$, and that $\Phi^{osp(1|2n)}_{L}(q)$ and $\Phi^{so(2n+1)}_{L}(-q)$ are identical up to a substitution of variables. For at least one class of links $F_{L}(-r,-s) = F_{L}(r,s)$ implying $\Phi^{osp(1|2n)}_{L}(q) = \Phi^{so(2n+1)}_{L}(-q)$ for these links.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2009
- DOI:
- 10.48550/arXiv.0901.3232
- arXiv:
- arXiv:0901.3232
- Bibcode:
- 2009arXiv0901.3232B
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematics - Geometric Topology;
- 57M27;
- 17B37
- E-Print:
- 16 pages, 4 figures, accepted for publication by the Journal of Knot Theory and its Ramifications