Raman spectroscopy study of heat-treated and boron-doped double wall carbon nanotubes
Abstract
We performed Raman spectroscopy experiments on undoped and boron-doped double walled carbon nanotubes (DWNTs) that exhibit the “coalescence inducing mode” as these DWNTs are heat treated to temperatures between 1200°C and 2000°C . The fact that boron doping promotes DWNT coalescence at lower temperatures allowed us to study in greater detail the behavior of first- and second-order Raman modes as a function of temperature with regard to the coalescence process. Furthermore, by using various excitation laser energies we probed DWNTs with different metallic (M) and semiconducting (S) inner and outer tubes. We find that regardless of their M and S configurations, the smaller diameter nanotubes disappear at a faster rate than their larger diameter counterparts as the heat treatment temperature is increased. We also observe that the frequency of the G band is mostly determined by the diameter of the semiconducting layer of those DWNTs that are in resonance with the laser excitation energy. Finally, we explain the contributions to the G' band from the inner and outer layers of a DWNT.
- Publication:
-
Physical Review B
- Pub Date:
- July 2009
- DOI:
- 10.1103/PhysRevB.80.035419
- Bibcode:
- 2009PhRvB..80c5419V
- Keywords:
-
- 63.22.-m;
- 81.07.De;
- Phonons or vibrational states in low-dimensional structures and nanoscale materials;
- Nanotubes