The roles of melt infiltration and cumulate assimilation in the formation of anorthosite and a Cr-spinel seam in the Rum Eastern Layered Intrusion, NW Scotland
Abstract
Thin (~ 2 mm) Cr-spinel seams are present at the bases of several of the coupled peridotite-troctolite units that comprise the Rum Eastern Layered Intrusion. In some cases, 'subsidiary' Cr-spinel seams have also developed at between 6 and 12 cm below the unit boundaries. The subsidiary seams are thinner than the normal seams (approx. 1 mm), discontinuous, and occur within and at the base of a thin (~ 10 cm) layer of anorthosite, which is sandwiched between peridotite and troctolite. The troctolite contains cumulus olivine, but in the Cr-spinel seam and anorthosite, olivine is intercumulus only. Cr-spinel is scarce in the troctolite, but common in the anorthosite, where it has a different composition (more Fe-and Cr-rich) and crystal size distribution (CSD) profile to the Cr-spinel in the subsidiary seam, suggesting that it represents a different crystal population. A model involving downward infiltration of hot picrite and resulting troctolitic cumulate assimilation is developed here to explain the subsidiary seams. This is based on petrographic observation, quantitative textural measurement and mineral chemical analyses. It is suggested that as the picritic magma was emplaced, downward percolation of this melt occurred into a troctolite mush. The anorthosite represents a layer of almost completely melted troctolite, formed by growth of high-anorthite zones from the contaminated picrite onto residual cumulus plagioclase. Assimilation of large amounts of the troctolite cumulate mush forced the contaminated picrite onto the olivine-spinel cotectic, leading to Cr-spinel crystallisation. Subsequently, the Cr-spinel crystals in the anorthosite have reacted with intercumulus melt over a wider temperature interval and have gained a more Fe 3+-rich composition than the subsidiary seam Mg- and Al-rich Cr-spinels. It is suggested that the separation of a small fraction of immiscible sulphide liquid in the Cr-spinel seams is the result of locally changing SiO 2 and oxygen fugacity at the crystal-melt interface, during the peritectic reaction of some of the Cr-spinel to produce olivine and plagioclase.
- Publication:
-
Lithos
- Pub Date:
- July 2009
- DOI:
- 10.1016/j.lithos.2008.11.011
- Bibcode:
- 2009Litho.111....6O