Modeling and prediction of fast CME/shocks associated with type II bursts
Abstract
A numerical simulation with ENLIL+Cone model was carried out to study the propagation of the shock driven by the 2005 May 13 CME. We then conducted a statistical analysis on a subset of similar events, where a decameter-hectometric (DH) type II radio burst and a counterpart kilometric type II have been observed to be associated with each CME (DHkm CME). The simulation results show that fast CME-driven shocks experienced a rapid deceleration as they propagated through the corona and then kept a nearly constant speed traveling out into the heliosphere. Two improved methods are proposed to predict the fast CME-driven shock arrival time, which give the prediction errors of 3.43 and 6.83 hrs, respectively.
- Publication:
-
Universal Heliophysical Processes
- Pub Date:
- March 2009
- DOI:
- Bibcode:
- 2009IAUS..257..489X
- Keywords:
-
- Coronal mass ejections (CMEs);
- shock waves;
- solar-terrestrial relations