AKARI near-infrared spectroscopy: Detection of H2O and CO2 ices toward young stellar objects in the Large Magellanic Cloud
Abstract
We present the first results of the AKARI Infrared Camera near-infrared spectroscopic survey of the Large Magellanic Cloud (LMC). The circumstellar material of young stellar objects (YSOs) are affected by galactic environments such as a metallicity or radiation field. Ices control the chemical balance of circumstellar environments of embedded YSOs. We detected absorption features of the H2O ice 3.05 μm and the CO2 ice 4.27 μm stretching mode toward seven massive YSOs in the LMC. This is the first detection of the 4.27 μm CO2 ice feature toward extragalactic YSOs. The present samples are for the first time spectroscopically confirmed to be YSOs. We used a curve-of-growth method to evaluate the column densities of the ices and derived the CO2/H2O ratio to be 0.45±0.17. This is clearly higher than that seen in Galactic massive YSOs (0.17±0.03). We suggest that the strong ultraviolet radiation field and/or the high dust temperature in the LMC may be responsible for the observed high CO2 ice abundance.
- Publication:
-
The Magellanic System: Stars, Gas, and Galaxies
- Pub Date:
- March 2009
- DOI:
- Bibcode:
- 2009IAUS..256..233S
- Keywords:
-
- circumstellar matter;
- stars: pre-main-sequence;
- ISM: molecules;
- galaxies: individual (LMC);
- Magellanic Clouds