Spatial and Temporal Alterations on Carbon and Water Cycles Due to Grazing
Abstract
Grasslands are vital in the carbon cycle, as large amounts of carbon are stored in the soils of the prairie. As climate change affects the carbon cycle, it is essential for the agricultural communities to understand the impacts of these changes on farming practices such as grazing and meat production. The objective of this study is to determine the effect of grazing on the carbon cycle by characterizing the surface boundary layer of both a grazed field and an ungrazed field. Data were collected from open path eddy covariance systems over Rannells Flint Hills Prairie Preserve in north-central Kansas, one over an ungrazed field and one over a grazed field. Cospectra of fluxes of CO2, heat, water, and momentum for July 2007 were compared to assess the size of eddies contributing energy to each field. For CO2, the cospectra for both the ungrazed and the ungrazed field were similar. For all of the other fluxes, lower frequency eddies contributed more energy in the grazed field than the ungrazed field. By using a footprint model, the contributing source areas were determined for fluxes from May through October of 2007. The grazed field had a larger distance of contribution in both stable and unstable atmospheric conditions. Implications of this study include the alterations on fields and impacts on the carbon and water cycles as a result of grazing.
- Publication:
-
AGU Spring Meeting Abstracts
- Pub Date:
- May 2009
- Bibcode:
- 2009AGUSM.B13C..16M
- Keywords:
-
- 0400 BIOGEOSCIENCES;
- 0402 Agricultural systems;
- 0426 Biosphere/atmosphere interactions (0315);
- 0428 Carbon cycling (4806)