Timing and paleoclimatic significance of Holocene glacier fluctuations in the Cordillera Vilcabamba of southern Peru
Abstract
Past fluctuations in climatically sensitive tropical glaciers provide important insight into regional paleoclimatic trends and forcings, but well-dated chronologies are scarce, particularly during the Holocene. We have established precise cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba (13°20’S latitude), located in the outer tropics of southern Peru. Results indicate the dominance of two major glacial culminations and associated climatic shifts in the Vilcabamba, including an early Holocene glacial interval and a somewhat less extensive glaciation late in the ‘Little Ice Age’ (LIA) period. Lichenometric measurements on the youngest moraines support the 10Be ages, but uncertainties in the lichen ages arise from the lack of a local lichen growth curve. The Peruvian glacier chronologies differ from a recently-developed New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region. For the latest Holocene, our leading hypothesis is that climate forcings involving southward migration of the Atlantic Intertropical Convergence Zone can explain concurrent glaciations in tropical South America and northern high latitudes, but the influence of other climate drivers such as the El Niño/Southern Oscillation may have also played a role. Estimated differences between equilibrium-line altitudes (ELAs) on modern glaciers and those inferred for expanded latest Holocene glaciers reveal an ELA rise of 165-200 m since the LIA, suggesting that temperatures 1.1-1.3°C cooler than present could have sustained glaciers at their LIA maximum positions if temperature was the only control, and thus providing an upper bound on temperature depression during the LIA. However, further work is required to constrain the likely role of precipitation changes. These new Peruvian glacier chronologies and ELA reconstructions complement ice core and lacustrine paleoclimate records in the vicinity, thereby increasing spatial and temporal coverage for identifying patterns of climate change in the tropical Andes during the Holocene.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMPP53A..05L
- Keywords:
-
- 0720 CRYOSPHERE / Glaciers;
- 1105 GEOCHRONOLOGY / Quaternary geochronology;
- 1150 GEOCHRONOLOGY / Cosmogenic-nuclide exposure dating;
- 4914 PALEOCEANOGRAPHY / Continental climate records