3-D crustal velocity model for Lithuania and its application to local event studies
Abstract
PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania and operated since June, 2006 till January, 2008. One of the main reasons of PASSEQ deployment in Lithuania is identification and characterisation of the local seismic activity. During the data acquisition period a number of local seismic events was identified and preliminary event location was made using LocSat and VELEST algorithms and 1-D velocity models. These standard procedures is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). Another problem was low quality of S-wave arrivals due to thick (up to 2 km) sediments in most part of Lithuania. In order to improve event location, we compiled a 3-D seismic velocity model of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded by controlled source experiments and calculated travel times through the 3-D velocity model. The model was converted into a density model using a special procedure, in which the density model is approximated by relationship between seismic velocity and density and the latter is found using inversion of the Bouguer anomaly. Comparison of the inversion result to the observed Bouguer anomaly showed that the upper part of the model needs to be corrected, in particular, in the areas not covered by the profiles. The corrected velocity model was then used to improve location of local events. The epicenters of events relocated with the use of a 3-D model are much less scattered and some of the clusters are confined to known areas of human activity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.T51B1516B
- Keywords:
-
- 7205 SEISMOLOGY / Continental crust;
- 7218 SEISMOLOGY / Lithosphere;
- 8110 TECTONOPHYSICS / Continental tectonics: general;
- 8122 TECTONOPHYSICS / Dynamics: gravity and tectonics