Magnitude and Carbon Consequences of Forest Management in North America
Abstract
The carbon balance of forests depends on the type, frequency and severity of recent disturbances (carbon source) and the rate of recovery from past disturbance (carbon sink). Harvest and land cover conversion represent significant forest disturbance agents over much of North America. For example, pine forests in the southeastern US are typically harvested at ~20 year intervals, and may occupy about half the regional landscape, resulting in regional landscape turnover rates of 2-3% per year. Inventory data are the primary source for quantifying information on harvest and conversion in the U.S., Mexico, and Canada. Recent inventory data from these countries indicate timber production of 424 million cu m, 163 million cu m, and 7 million cu m, respectively, with significant year-to-year variability associated with wood products demand and timber price. Areas affected by harvest activity vary as well, with 3.97 Mha (million hectares) and 1.04 Mha affected by harvest in the US and Canada, respectively. Forest cover conversion (deforestation) is thought to be relatively minor in the US and Canada, but recent estimates suggest that forest and woodland cover in Mexico declined by 300-500 Kha/yr during the 1990’s. Recently, satellite remote sensing data products on forest change have been generated that complement the traditional inventory approach. These products are particularly useful for “wall-to-wall” estimates of forest conversion and tracking small disturbances. The type and severity of disturbance cannot be easily determined using satellite observations, however, and therefore some care must be taken to reconcile these products with ground-based data. In this talk we review available resources for characterizing “carbon relevant” information on the magnitude (area, type of activity) of forest management in North America, and attempt a first-order comparison between remote sensing and inventory estimates. We also discuss strategies that might be employed to produce consistent, continent-wide maps and statistical summaries of forest harvest and conversion in order to support ongoing carbon modeling efforts.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B51H..01M
- Keywords:
-
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0429 BIOGEOSCIENCES / Climate dynamics;
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0480 BIOGEOSCIENCES / Remote sensing