Engineering Biochar Hydrophobicity to Mitigate Risk of Top-Soil Erosion
Abstract
The pyrolysis of biomass is a net carbon negative method of sequestering atmospheric carbon as recalcitrant black carbon. The resulting solid product, called biochar, is likely to improve agricultural soils when used as a soil conditioner in sustainable land management practice. Biochar has been shown to improve crop yields, improve water-holding capacity in sandy soils, increase cation exchange capacity (CEC), and retain nutrients from fertilization longer than soils unamended with biochar. Biochar undoubtedly has high potential as both a carbon management tool and a tool to increase global food production. However, little is understood about possible side effects of biochar in agricultural soils such as ecosystem toxicity, interactions with biota, and modification of soil hydrologic properties, such as permeability. The hydrophobicity of a soil determines how easily precipitation can permeate soil pores. Water that fails to permeate is redirected as runoff, responsible for the detachment and transport of nutrient-rich topsoil particles. Mitigating top-soil erosion is an important aspect of sustainable land management. Biochar, primarily composed of condensed aromatic structures, is a hydrophobic material and incorporating it into agricultural soils may act to alter soil hydrology through multiple avenues. These include a likely increase in soil water-holding capacity (a positive outcome) and a potential increase in soil hydrophobicity (a negative outcome). In an effort to understand how to engineer reduced biochar hydrophobicity, we investigated the hydrophobicity of biochars as a function of biomass feedstock, pyrolysis temperatures, and post-pyrolysis chemical treatments. We used Water Drop Penetration Time (WDPT) and Molarity of an Ethanol Drop (MED) tests to measure hydrophobicity, and FTIR, CPMAS-NMR, and N2-BET to probe the surface chemistry, bulk chemistry, and surface area of various biochars, respectively. We used post-pyrolysis chemical treatments of biochar to study the origin of biochar hydrophobicity and to assess the possibility of reducing hydrophobicity prior to soil amendment. We used correlative analysis to study the relationship between hydrophobicity, biomass and pyrolysis characteristics, as well as chemical treatments. Future work will focus on engineering designer biochars which minimize hydrophobicity while maximizing positive benefits, such as ion exchange capacity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B41B0301K
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0486 BIOGEOSCIENCES / Soils/pedology;
- 1866 HYDROLOGY / Soil moisture