The oxygen side of sulfate constrains global biospheric productivity in the mid-Phanerozoic
Abstract
Recent work has read in the oxygen side of sulfate a record of CO2 concentrations and extreme environments on Neoproterozoic Earth [1, 2]. The connection between CO2 levels and total isotopic composition of mineral proxies for marine sulfate was motivated by an empirical correlation between CO2 concentrations and in 17O anomalies in samples of atmospheric gases preserved as bubbles in ice cores [3,4]. The 17O anomaly in atmospheric O2 has been interpreted to originate primarily from stratospheric photochemical cycles of O3, O2, and CO2 [3, 4]. Both CO2 and O3 form the 17O-enriched partners for the 17O-depleted O2 and, given a fixed atmospheric lifetime for O2, isotopic mass balance dictates that increasing CO2 levels will drive larger relative 17O deficits in O2. With a photochemically-calibrated relationship between the relative 17O anomaly in atmospheric O2 and atmospheric CO2 levels [1], the amount of CO2 in an ancient atmosphere can be directly estimated from the isotopic record of atmospheric O2 bound up in the oxygen side of sulfate. Although they are correlated, the relative 17O anomaly in atmospheric O2 is not only a function of atmospheric CO2 levels. Photosynthetic O2 is characterized by isotopically ‘normal’ oxygen sourced from the global hydrosphere [3]. Increased photosynthetic O2 production, therefore, dilutes the isotopic anomaly found in atmospheric O2. Measurements of the 17O anomaly in O2 from ice cores allow global changes in global biosphere productivity to be traced back to 60 ka ago [3, 4]. Applying similar analysis to recent datasets of the 17O anomaly in marine sulfates [1] and atmospheric CO2 levels [5] produces quantitative global biospheric productivity estimates for the time interval from 310 to 240 Ma ago. Although the time resolution is coarse, much of the mid-Phanerozoic was characterized by global biospheric productivity similar in magnitude to the average global biospheric productivity for the last 10 ka. Counterintuitively, this includes the global mid-Carboniferous biosphere. Global biospheric productivity at the end of the Permian, however, was apparently greatly enhanced relative to the rest of the mid-Phanerozoic. [1] Huiming Bao, J. Lyons, Chuanming Zhou (2008) Nature 453 504. [2] Huiming Bao, I.J. Fairchild, P.M. Wynn, C. Spötl (2009) Science 323 119. [3] B. Luz, E. Barkan, M. L. Bender, M. H. Thiemens, K. A. Boering (1999) Nature 400 547. [4] T. Blunier, B. Barnett, M. L. Bender, M. B. Hendricks (2002) Global Biogeochem. Cycles 16 doi:10.1029/2001GB001460. [5] D. L. Royer (2006) Geochim. Cosmochim. Acta 70 5665.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B22B..07W
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0426 BIOGEOSCIENCES / Biosphere/atmosphere interactions;
- 0444 BIOGEOSCIENCES / Evolutionary geobiology;
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry