Characterization of ozone precursors in a regional background site of the Pearl River Delta by time series observation of non-methane hydrocarbons
Abstract
Continuous hourly measurements of C3-C12 non-methane hydrocarbons (NMHCs) were carried out in the period July 3 - 30, 2006 at a downwind site of Peal River Delta during the PRIDE-PRD2006 campaign. The measurements were intended to characterize the “residual composition” of ozone precursors through photochemical processing and to evaluate the photochemical relationship between oxidant (O3+NO2) and its precursors. An observation based method (OBM) of consumption concept is used to generate an ozone isopleth diagram that resembles the EKMA diagram, to examine the relationship of oxidant versus ozone precursors. A critical step in the method is to use observed concentrations of ethylbenzene and m,p-xylenes to estimate the degree of photochemical processing and amounts of photochemically consumed NOx and NMHCs by OH. The 3D OBM ozone isopleth diagram indicates that the observed oxidant level was sensitive to both of the consumed amounts of NMHCs and NOx. In addition, based on the 577 samples analyzed, toluene, benzene, isoprene, xylene and C3-C5 alkanes were found to be the most elevated species accounting for around 55% of the total measured NMHC abundance. After considering both the photochemical reactivities and mixing ratios of all the measured species, CO, isoprene, propene, xylene and toluene were calculated to have the highest ozone formation potentials (OFPs) accounting for 76.5% of total reactivity. Good correlation between NMHCs and 3-methylpentane, a proven good vehicular indicator, suggests vehicular emissions should be the major source for anthropogenic NMHCs. No correlation was found between isoprene and anthropogenic NMHCs, clearly supporting the existence of isoprene’s non-anthropogenic sources. Moreover, its diurnal pattern showed maximum mixing ratios around midday hours and minima at night, reflecting its biogenic properties which are both solar radiation and temperature dependent. Keywords: Age indicator; photochemical aging; NOx-control regime; ozone control strategy
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.A21C0163C
- Keywords:
-
- 0317 ATMOSPHERIC COMPOSITION AND STRUCTURE / Chemical kinetic and photochemical properties