Orbital modulation of X-ray emission lines in Cygnus X-3
Abstract
Aims: We address the problem where the X-ray emission lines are formed and investigate orbital dynamics using Chandra HETG observations, photoionizing calculations and numerical wind-particle simulations. The aims were to set constraints on the masses of the components of this close binary system consisting of a Wolf-Rayet (WR) star and a compact component and to investigate the nature of the latter (neutron star or black hole). The goal was also to investigate P Cygni signatures in line profiles.
Methods: The observed Si xiv (6.185 Å) and S xvi (4.733 Å) line profiles at four orbital phases were fitted with P Cygni-type profiles consisting of an emission and a blue-shifted absorption component. Numerical models were constructed using photoionizing calculations and particle simulations. In the models, the emission originates in the photoionized wind of the WR companion illuminated by a hybrid source: the X-ray radiation of the compact star and the photospheric EUV-radiation from the WR star.
Results: Spectral lines with moderate excitation (such as Si xiv and S xvi) arise in the photoionized wind. The emission component exhibits maximum blue-shift at phase 0.5 (when the compact star is in front), while the velocity of the absorption component is constant (around -900 km s-1). Both components, like the continuum flux, have intensity maxima around phase 0.5. The simulated Fe xxvi Lyα line (1.78 Å, H-like) from the wind is weak compared to the observed one. We suggest that it originates in the vicinity of the compact star, with a maximum blue shift at phase 0.25 (compact star approaching). By combining the mass function derived with that from the infrared He i absorption (arising from the WR companion), we constrain the masses and the inclination of the system.
Conclusions: The Si xiv and S xvi lines and their radial velocity curves can be understood in the framework of a photoionized wind involving a hybrid ionizer. Constraints on the compact star mass and orbital inclination (i) are given using the mass functions derived from the Fe xxvi line and He i 2.06 μm absorption. Both a neutron star at large inclination (i ≥ 60 degrees) and a black hole at small inclination are possible solutions. The radial velocity amplitude of the He ii 2.09 μm emission (formed in the X-ray shadow behind the WR star) suggests i = 30 degrees, implying a possible compact star mass between 2.8-8.0 M⊙. For i = 60 degrees the same range is 1.0-3.2 M⊙.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- July 2009
- DOI:
- arXiv:
- arXiv:0904.3967
- Bibcode:
- 2009A&A...501..679V
- Keywords:
-
- black hole physics;
- accretion;
- accretion disks;
- stars: binaries: spectroscopic;
- stars: winds;
- outflows;
- stars: individual: Cygnus X-3;
- stars: neutron;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 8 pages, accepted 19/04/2009 for publication in Astronomy and Astrophysics