Stanley depth of complete intersection monomial ideals and upper-discrete partitions
Abstract
Let $I$ be an $m$-generated complete intersection monomial ideal in $S=K[x_1,...,x_n]$. We show that the Stanley depth of $I$ is $n-\floor{\frac{m}{2}}$. We also study the upper-discrete structure for monomial ideals and prove that if $I$ is a squarefree monomial ideal minimally generated by 3 elements, then the Stanley depth of $I$ is $n-1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2008
- DOI:
- 10.48550/arXiv.0805.4461
- arXiv:
- arXiv:0805.4461
- Bibcode:
- 2008arXiv0805.4461S
- Keywords:
-
- Mathematics - Commutative Algebra;
- Primary 13C13;
- Secondary 05E99;
- 06A07
- E-Print:
- Updated version. 9 pages. To appear in Journal of Algebra