Generalized Robin Boundary Conditions, Robin-to-Dirichlet Maps, and Krein-Type Resolvent Formulas for Schrödinger Operators on Bounded Lipschitz Domains
Abstract
We study generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains in $\bbR^n$, $n\ge 2$. We also discuss the case of bounded $C^{1,r}$-domains, $(1/2)<r<1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2008
- DOI:
- 10.48550/arXiv.0803.3179
- arXiv:
- arXiv:0803.3179
- Bibcode:
- 2008arXiv0803.3179G
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematics - Spectral Theory;
- 35J10;
- 35J25;
- 35Q40 (Primary);
- 35P05;
- 47A10;
- 47F05 (Secondary)
- E-Print:
- 61 pages, typos corrected, new material added