Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot
Abstract
Most schemes for quantum information processing require fast single-qubit operations. For spin-based qubits, this involves performing arbitrary coherent rotations of the spin state on time scales much faster than the spin coherence time. By applying off-resonant, picosecond-scale optical pulses, we demonstrated the coherent rotation of a single electron spin through arbitrary angles up to π radians. We directly observed this spin manipulation using time-resolved Kerr rotation spectroscopy and found that the results are well described by a model that includes the electron-nuclear spin interaction. Measurements of the spin rotation as a function of laser detuning and intensity confirmed that the optical Stark effect is the operative mechanism.
- Publication:
-
Science
- Pub Date:
- April 2008
- DOI:
- 10.1126/science.1154798
- Bibcode:
- 2008Sci...320..349B
- Keywords:
-
- PHYSICS