The stellar populations of M33's outer regions - IV. Inflow history and chemical evolution
Abstract
We have modelled the observed colour-magnitude diagram (CMD) at one location in M33's outskirts under the framework of a simple chemical evolution scenario which adopts instantaneous and delayed recycling for the nucleosynthetic products of Type II and Ia supernovae. In this scenario, interstellar gas forms stars at a rate modulated by the Kennicutt-Schmidt relation and gas outflow occurs at a rate proportional to the star formation rate (SFR). With this approach, we put broad constraints on the role of gas flows during this region's evolution and compare its [α/Fe] versus [Fe/H] relation with that of other Local Group systems. We find that models with gas inflow are significantly better than the closed-box model at reproducing the observed distribution of stars in the CMD. The best models have a majority of gas inflow taking place in the last 7 Gyr, and relatively little in the last 3 Gyr. These models predict most stars in this region to have [α/Fe] ratios lower than the bulk of the Milky Way's halo. The predictions for the present-day SFR, gas mass and oxygen abundance compare favourably to independent empirical estimates. Our results paint a picture in which M33's outer disc formed from the protracted inflow of gas over several Gyr with at least half of the total inflow occurring since z ~ 1.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2008
- DOI:
- arXiv:
- arXiv:0808.1918
- Bibcode:
- 2008MNRAS.390..863B
- Keywords:
-
- galaxies: abundances;
- galaxies: evolution;
- galaxies: individual: Messier Number: M33;
- Local Group;
- galaxies: spiral;
- galaxies: stellar content;
- Astrophysics
- E-Print:
- 22 pages, 12 figures, accepted to MNRAS