Ab initio study of the one- and two-photon circular dichroism of R-(+)-3-methyl-cyclopentanone
Abstract
One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.
- Publication:
-
Journal of Chemical Physics
- Pub Date:
- April 2008
- DOI:
- 10.1063/1.2907727
- Bibcode:
- 2008JChPh.128p4312R
- Keywords:
-
- 33.55.+b;
- 33.80.Rv;
- 31.15.eg;
- 33.80.Eh;
- 33.15.Kr;
- 31.15.ap;
- Optical activity and dichroism;
- Multiphoton ionization and excitation to highly excited states;
- Exchange-correlation functionals;
- Autoionization photoionization and photodetachment;
- Electric and magnetic moments polarizability and magnetic susceptibility;
- Polarizabilities and other atomic and molecular properties