Fully Self-Consistent N-body Simulation of Star Cluster in the Galactic Center
Abstract
We have developed a new tree-direct hybrid algorithm, "Bridge". It can simulate small scale systems embedded within large-N systems fully self-consistently. Using this algorithm, we have performed full N-body simulations of star clusters near the Galactic center (GC) and compared the orbital evolutions of the star cluster with those obtained by "traditional" simulations, in which the orbital evolution of the star clusters is calculated from the dynamical friction formula. We found that the inspiral timescale of the star cluster is shorter than that obtained with traditional simulations. Moreover, we investigated the eccentricities of particles escaped from the star cluster. Eccentric orbit of the star cluster can naturally explain the high eccentricities of the observed stars.
- Publication:
-
Dynamical Evolution of Dense Stellar Systems
- Pub Date:
- May 2008
- DOI:
- Bibcode:
- 2008IAUS..246..467F
- Keywords:
-
- galaxies: star clusters;
- methods: n-body simulations;
- Galaxy: center;
- kinematics and dynamics;
- stellar dynamics