Kinetic and modeling studies on ETBE pyrolysis behind reflected shock waves
Abstract
The high temperature pyrolysis of ethyl tert-butyl ether (ETBE) was studied behind reflected shock waves coupled with the single-pulse method and UV (195 nm) absorption spectroscopy in the temperature range 1000-1500 K at total pressures ranging between 1.0 and 9.0 atm. The energies of ETBE and transition states for the reactions ETBE = iso-C 4H 8 + C 2H 5OH (1) and ETBE = C 2H 4 + tert-C 4H 9OH (2) were calculated at the MP4/cc-pVTZ//MP2/cc-pVTZ level of theory. A 170-reaction mechanism was constructed to explain the product distribution. From the UV absorption experiment, the rate coefficient k1 = 1.7 × 10 14exp(-254.0 kJ mol -1/RT) s -1 was found to reach its high-pressure limit.
- Publication:
-
Chemical Physics Letters
- Pub Date:
- January 2008
- DOI:
- Bibcode:
- 2008CPL...451..192Y