Water Balance of the San Simon Groundwater Basin, El Salvador, Central America
Abstract
The Berlin hydrothermal field in El Salvador, Central America is located in the San Simon River Basin on the northwest slope of the Berlin-Tecapa volcanic complex, in the eastern portion of the country. This hydrothermal field, which has been exploited since 1992, is a liquid-dominated system governed by faults and caldera structures allowing infiltration and transport of meteoric fluids. San Simon River is a tributary of the Lempa River, the largest river in the country. Geophysical studies have found that the Berlin field is composed of three aquifers (Shallow, Intermediate, Deep). Exploitation involves the removal of hot fluids from the geothermal reservoir (deep aquifer) and re-injection of lower temperature fluids. This study analyzes the surficial hydrology and groundwater storage change (since exploitation) in the hydrothermal reservoir to produce a water budget. Field monitoring of springs, fumarolic activity, domestic wells, tributaries to the San Simon River, and meteorological data provide constraints on the hydrology. Springs occur in the system close to fault zones or at contacts between different lithologies. The water balance for the San Simon groundwater basin (July 2004 - June 2005) indicates that 2.51 - 3.46 E7 m3/yr of water are infiltrated to the ground, 1.30 - 1.45E7 m3/yr comprises the overland flow, 5.74 E6 m3/yr form the base flow of the San Simon River, and 1.54 E5 m3/yr is released thru the evaporation of Alegria Lake. The shallow aquifer is affected by pumping of 4.78 E6 m3/yr by the national water company. To complete the water balance of the San Simon Basin, a correlation between the composition of the fumarolic gases and the diffuse flux of soil CO2 was performed. The flux of water released from fumarolic areas was estimated at 1.48 E5 m3/yr. An analysis of the increase in chloride concentration with time in the deep aquifer and the net mass withdrawn from this aquifer allow an estimation of the decrease in storage in the hydrothermal aquifer of -3.44 E6 m3/yr for the study period. This water balance will assist future operations in optimization and sustainability of the geothermal reservoir.
- Publication:
-
AGU Spring Meeting Abstracts
- Pub Date:
- May 2008
- Bibcode:
- 2008AGUSM.H33C..08S
- Keywords:
-
- 1034 Hydrothermal systems (0450;
- 3017;
- 3616;
- 4832;
- 8135;
- 8424);
- 1829 Groundwater hydrology;
- 1876 Water budgets;
- 1878 Water/energy interactions (0495)