Crystals and Crystals: On the Mythology of Magmatic Processes
Abstract
The intimate records of the deep functioning of magmatic systems reside in the temporal and spatial records of magma flux, composition and crystal load. The records for a single system are piecemeal: Plutons show good spatial records, but poor temporal records. Volcanoes give through lava sequences good temporal records, but no spatial context. Because of this dichotomy, two, almost mutually exclusive, branches of magmatology have developed, whereas in Nature there is only a single process. The processes envisioned in these schools necessary to deliver the end rock record are distinct. It is our tools and historic perspectives that have steered the science, not the subject itself. Due to this approach an almost mythical conception of how magmas function has become commonplace. The circumvention of this dilemma rests in carefully evaluating the records on hand in the light of a broad understanding of the fundamental mechanics of how magma lives and dies. It is these basic principles that promise to unify plutonic and volcanic evidence to reveal the full nature of magmatism on all scales. The two most basic features of all magmatic processes are the universal presence of solidification fronts and the presence or absence of a crystal cargo. Almost without exception (e.g., shallow pressure quenching) all first generation crystals grow in marginal solidification fronts (SFs) bordering all magmas. The package of isotherms bounded by the liquidus and solidus define SFs, which propagate in response to the rate of cooling. All physical and chemical processes occurring within SFs compete with the advancement or retreat of solidification. SFs are governed by crystallinity regimes: Suspension Zone (<25 % xtals), Capture Front (~25 %), Mush Zone (25-55%), Rigidity Front (~55%; Critical Crystallinity), and Rigid Crust Zone (>55% xtals). Magmas are laced with nuclei that multiply and grow when overtaken. Crystal growth rates are bounded; tiny crystals reside at the front of SFs and big crystals at the rear. It is unlikely that crystals can ever escape SFs once beyond the Capture Front, and crystals that do fall (singly or in plumes) from the leading edge of SFs may suffer resorbtion upon transit through deeper, hotter magma. Above all, differentiation is severely limited as there is no crystallization in the central, hottest part of the body, and the crystals that are available for separation are tiny and have little effect on melt composition. Recall, ~50% loss of olivine enhances silica by 5%, but this places this magma at Critical Crystallinity. Phenocrysts come from disrupted SFs and are essential to read as such; they may come from a wide range of P's and T's. Ragged old crystals rolling about for untold numbers of flushing times record specious process times; telling more about transport and crystal-chemical noise in the system than the life of typical, first generation crystallization processes. Yet, noise is a system characteristic as is exemplified by the disharmonious isotope heritage of neighbor phenocrysts. Differentiation mainly comes from the sudden loss of a dynamically entrained load of crystals of diverse heritage equilibrating with the 'carrier' magma. Big crystals carrying fluid inclusions, for example, come from deep within SFs where residual melt is low and enriched and not from the central, early, primitive magma. All systems show these characteristics. They are exceedingly important to recognize and to put in the context of the power, longevity, and geometry of the system. Not recognizing them for what they are and what they are not recording only builds mythological magmatic systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V43J..01M
- Keywords:
-
- 1036 Magma chamber processes (3618);
- 1037 Magma genesis and partial melting (3619);
- 3640 Igneous petrology;
- 3642 Intrusive structures and rocks;
- 8439 Physics and chemistry of magma bodies