Shallow vs. Deep Fluid Sources In Hydrothermal Systems: New Insights From VOC Composition In Fumarolic Discharges And Soil Gases Of Yellowstone National Park (USA)
Abstract
The origin of non-methane volatile organic compounds (VOCs) in hydrothermal fluids is related to two distinct mechanisms regulated by different thermodynamic conditions (e.g. Des Marais et al., 1981; Mango, 2000; Capaccioni and Mangani, 2001): i) thermogenic reactions, such as catalytic reforming and/or thermal cracking, which proceed within the main reservoir at medium-to-high temperature (150-350°C) and reduced conditions; ii) biodegradation processes, occurring at relatively shallow depth, where uprising fluids have <150°C and suffer oxidizing conditions. According to these considerations, the main aim of the present investigation is to discriminate the different fluid sources feeding the hydrothermal system on the basis of the C2-C15 organic compounds in fumarolic discharges and soil gases collected at the Yellowstone National Park (USA). A total of 64 and 66 different species were identified in the gas discharges and in the soil gas samples, respectively. The composition of the organic gas fraction in the fumarolic fluids is relatively homogeneous, being dominated by C2-C6 alkanes (81 %) and showing relatively high concentrations of alkenes (13 %), aromatics (3.7 %) and cyclics (1.4 %). Differently, the relative percentages of alkanes and alkenes in the soil gas, where VOC abundances are about two orders of magnitude less abundant than those in the gas discharges, are significantly lower (64 and 6.8 %, respectively) and cyclics are absent. On the other hand, oxygenated species (17.8 %), aromatics (5.6 %) and Cl-bearing compounds (4.5 %) results to be enriched with respect to those measured in the gas vents. Such compositional differences are likely to be due to the bacterial activity in the soil that causes the production of ketones, esters, alcohols, aldehydes and organic acids from the C-H species (hydrocarbons sensu strictu). Organic acids, mainly constituted by ossalic acid and traces of tartaric, malonic citric and succinic ones, were also determined in the fumarolic condensates. This seems to indicate that biodegradation likely occurs even within the hydrothermal systems, since the production of low molecular mass organic acids is to be related to bacterial activity (Arnetoli et al., 2008 and references therein). S-bearing compounds are strongly controlled by the fS values and this would explain the relatively high concentrations of these species in the H2S-rich fumarolic discharges. As far as it concerns the relatively high abundance of halogenated compounds in the soil gases, it can be suggested that the origin of these species is likely to be related to atmospheric contribution. Actually, formation of Cl- bearing species from reactions between VOCs and Cl-rich fluids, such as those of the deep hydrothermal reservoir, is still matter of debate. Therefore, we may speculate that these compounds, characterized by chemical inertness, are added to the hydrothermal fluids from meteoric water recharging the system. References: Arnetoli, M., Montegrossi, G., Buccianti, A., Gonnelli, C., 2008. J. Agricol. Food Chem., 56, 789- 795. Capaccioni, B., Mangani, F., 2001. Earth Planet. Sci. Lett., 188, 543-555. Des Marais, D.J., Donchin, J.H., Truesdell, A.H., Nehring, N.L., 1981. Nature, 292, 826-828. Mango, F.D., 2000. Geochim. Cosmochim. Acta, 64, 1265-1277.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V11A1998T
- Keywords:
-
- 0471 Oxidation/reduction reactions (4851);
- 1022 Composition of the hydrosphere;
- 1034 Hydrothermal systems (0450;
- 3017;
- 3616;
- 4832;
- 8135;
- 8424);
- 1055 Organic and biogenic geochemistry;
- 8430 Volcanic gases