P- and S- wave velocity structure in and around the Itoigawa-Shizuoka Tectonic Line (ISTL) fault system revealed by dense seismic array observations
Abstract
The ISTL is a major tectonic structure that divides the Japanese Island arc into northeast and southwest parts. It was formed as a normal fault in the early Miocene and represents the southwestern boundary of the northern Fossa Mangna rift basin to the north, and the boundary between the Japanese arc accretionary prism units and the Izu-Bonin arc crust to the south. Previous studies have provided the sallow structure of the different ISTL fault segments, but the detailed crustal structure along the ISTL is yet to be revealed. The online permanent seismic station network in the area is not sufficient to accurately locate the earthquakes occurring in the area and also not dense enough to provide a detailed structure of the earth's crust. Over the past 3 years we have installed temporary seismic stations along the STL. We have deployed 60 stations in the southern, 58 stations in the central and 60 stations in the northern ISTL regions. We have combined the data retrieved from the temporary stations with the data available from the online permanent stations in the ISTL area and manually re-picked 63,275 P- and 68,847 S- wave arrival times from 1,945 events from the 5th August 2003 to 31st December 2006. The Double Difference tomography method (Zhang and Thurber, 2003) was used in order to accurately relocate the hypocenters and obtain a 3D P- and S- wave velocity (Vp and Vs) structure beneath the ISTL fault system. The relocated hypocenters in the southern ISTL coincide with the deeper extension of the active faults in the area. The relocated hypocenters are deeper than those reported by the Japan Meteorological Agency (JMA) in the northern ISTL and shallower at the central and southern parts. The average depth of the hypocenters is shallower in the northern ISTL (3 - 8 km) and gets progressively deeper towards the central (8-15 km) and southern (15-25 km) ISTL. The tomographic analysis has provided a detailed Vp and Vs image of the crust in the area below the ISTL. The 3D velocity model that we have acquired of the crustal structure in the area is in accordance with the geological boundaries. The northern tomograms fit accurately with the deeper extension of the Matsumoto basin and the central uplift zone geological units. In the central ISTL, the Yatsugatake volcano magmatic conduit was imaged. In the southern ISTL, we imaged the downwards continuation of the low grade metamorphic rocks that constitute the Chichibu-Shimanto belts of the southwest acrretionary prism of the Japanese arc, and of the igneous rocks that form the Izu-Bonin arc crust.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.T13B1937P
- Keywords:
-
- 7230 Seismicity and tectonics (1207;
- 1217;
- 1240;
- 1242);
- 7270 Tomography (6982;
- 8180);
- 8100 TECTONOPHYSICS;
- 8104 Continental margins: convergent;
- 8150 Plate boundary: general (3040)