Portable Cavity Ringdown Spectrometer for Methane Isotope Ratio Measurements
Abstract
Close to 45% (244 Tg/yr) of the methange (CH4) in the atmosphere is produced in anaerobic soil conditions (wetlands and rice paddies). Under aerobic soil conditions, bacteria oxidize CH4 to produce CO2 and H2O. Both production and oxidation rates depend on soil composition, nutrient loadings, water content, and plant conditions, but these dependencies are not well characterized. Measurements of CH4 isotope ratios can provide a better understanding of CH4 processes in natural and man- made ecosystems. Here we present progress on the development of a field deployable instrument capable of making precision 13CH4/12CH4 and CH3D/ CH4 isotope ratio measurements of CH4. Moving the instrument out of the lab and into the field will significantly improve the spatial and temporal resolution of data and enhance the study of plant-soil-atmosphere CH4 source and sink processes. Our instrument is a Near-IR (1280-1340 nm) tunable diode laser Cavity Ringdown Spectroscopy (CRDS) system. CRDS is a technique in which the laser injects energy into a high finesse cavity by tuning to one of the cavity resonant modes, resulting in a buildup of energy. At some threshold intra-cavity intensity the injection is stopped, and the intensity decays exponentially due to losses such as absorption by molecules. If the laser is tuned to an absorption line of a sample gas, the concentration of the molecule is proportional to the decay constant (according to the Beer-Lambert law)--scanning over a frequency range produces an absorption spectrum. Currently our system has a resolution of 150 MHz scanning over a 30 GHz (0.2 nm) region, allowing us to resolve peaks at pressures of 100 torr. Using combinations of CH4 standard (natural isotopic abundance) and a 99% pure 13CH4 standard, we identified several lines in the CH4 HITRAN Database that we attribute to 13CH4. We use these and 12CH4 lines within the same region to measure 13CH4 concentration, 12CH4 concentration, and the isotope ratio (13C/12C and D/H). We present our lab-based prototype system, including our latest isotope ratio performance and measurement precision. In addition, we present the way forward to achieve both our target precision and portability.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.B23C0444B
- Keywords:
-
- 0315 Biosphere/atmosphere interactions (0426;
- 1610);
- 0322 Constituent sources and sinks;
- 0365 Troposphere: composition and chemistry;
- 1615 Biogeochemical cycles;
- processes;
- and modeling (0412;
- 0414;
- 0793;
- 4805;
- 4912);
- 1694 Instruments and techniques