The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter
Abstract
A detailed analysis of the 2006 November 15 data release X-ray surface density Σ-map and the strong and weak gravitational lensing convergence κ-map for the Bullet Cluster 1E0657-558 is performed and the results are compared with the predictions of a modified gravity (MOG) and dark matter. Our surface density Σ-model is computed using a King β-model density, and a mass profile of the main cluster and an isothermal temperature profile are determined by the MOG. We find that the main cluster thermal profile is nearly isothermal. The MOG prediction of the isothermal temperature of the main cluster is T = 15.5 +/- 3.9keV, in good agreement with the experimental value T = 14.8+2.0-1.7keV. Excellent fits to the 2D convergence κ-map data are obtained without non-baryonic dark matter, accounting for the 8σ spatial offset between the Σ-map and the κ-map reported in Clowe et al. The MOG prediction for the κ-map results in two baryonic components distributed across the Bullet Cluster 1E0657-558 with averaged mass fraction of 83 per cent intracluster medium (ICM) gas and 17 per cent galaxies. Conversely, the Newtonian dark matter κ-model has on average 76 per cent dark matter (neglecting the indeterminant contribution due to the galaxies) and 24 per cent ICM gas for a baryon to dark matter mass fraction of 0.32, a statistically significant result when compared to the predicted Λ-cold dark matter cosmological baryon mass fraction of 0.176+0.019-0.012.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2007
- DOI:
- 10.1111/j.1365-2966.2007.12275.x
- arXiv:
- arXiv:astro-ph/0702146
- Bibcode:
- 2007MNRAS.382...29B
- Keywords:
-
- gravitation;
- gravitational lensing;
- galaxies: clusters: individual: 1E0657-558;
- dark matter;
- X-rays: individual: 1E0657-558;
- Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- Accepted for publication in Mon. Not. Roy. Astron. Soc. -- July 26, 2007. In press. 28 pages, 15 figures, 5 tables