Disentangling The Magnetic Field Structure Of Sunspots - Stereoscopic Polarimetry With Solar Orbiter
Abstract
Sunspots exhibit complex, highly structured magnetic fields and flows. Disentangling the atmospheric structure of sunspots is a great challenge, and can only be achieved by the combination of spectropolarimetry at high spatial resoultion and detailed modeling efforts. We use a generalized 3D the embeds magnetic flux tuber in a stratified atmosphere and calculates the emerging polarization of spectrail lines for arbitrary viewing angles. The resulting polarization maps are a very efficient tool to distinguish between different atmospheric scenarios and determine the 3D structure of the magnetic field and the flow field. In this contribution, we present synthetic maps of the net circular polarication (NCP) as a function of the heliocentric angle for different spectral lines of interest. Among these are the Fe I 617.3 nm line which would be observed by the VIM instrument abard Solar Orbiter and the Fe I 630.2 nm line which will be observed by Hinode (formerly known as Solar-B).
- Publication:
-
Second Solar Orbiter Workshop
- Pub Date:
- January 2007
- Bibcode:
- 2007ESASP.641E..32M