Numerical Simulations Of The Impact Of Comet Shoemaker-Levy 9: Plume Development
Abstract
We present results of our three-dimensional, hydrodynamic simulations of the impact of comet Shoemaker-Levy 9 (SL9) into the atmosphere of Jupiter. In the current phase of the research we focus on the plume blowout and splashback phases of the SL9 event. We have modified the Zeus-MP/2 model (Hayes et al. 2006) to be suitable for our investigation, adding a Jovian atmospheric profile, Tillotson equation of state for the impactor, and the Coriolis terms. As an initial condition of our high-resolution simulations we use the energy deposition profile taken from the SL9 impact modeling of Korycansky et al. (2006). The effects of the Coriolis force during the shockwave propagation are tested through sensitivity tests. The viscosity in the splash model is adjusted until the outer part of the plume re-entry shock matches the expanding infrared rings (McGregor et al. 1996). The molecular viscosity being well-known, this will place a strong constraint on the Jovian eddy viscosity. We add radiative terms from previous 2D splash calculation of Deming and Harrington (2001) to allow us to calculate realistic wavelength-dependent lightcurves and low-resolution spectra for direct comparison to data. This work is supported by National Science Foundation Grant No. 0307638 and National Aeronautics and Space Administration Grant No. NNG 04GQ35G.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #39
- Pub Date:
- October 2007
- Bibcode:
- 2007DPS....39.1908P