Analysis of Regionally Detected Icequakes Using the STEEP Network, South-Central AK
Abstract
Glaciers produce seismic energy that is detectable from local to teleseismic distances. Glaciolgical processes including calving, surface crevassing, basal sliding and other, yet unresolved source processes are capable of producing recordable seismicity. Twenty-two broadband sensors deployed in south-central Alaska during the SainT Elias TEctonics and Erosion Project (STEEP) provide an excellent means to study glacier-generated seismicity at regional distances. These instruments surround over 7500 km2 of glacier area including the Bering Glacier, Bagley Icefield and the tidewater calving glaciers of Icy Bay (Yahtse, Guyot, Tyndal). Our analysis shows that icequakes nominally occur several times hourly, and can be separated from tectonic seismicity using their unique spectral characteristics and hypocenter locations. The events typically propagate over 50-75 km distances, but occasionally are recorded at stations over 150 km away from the energy source. Hypocenters for more than 1000 events were manually calculated through a 26-day interval during October 2006, and suggest that a majority of the icequakes are associated with calving at tidewater glaciers that terminate in Icy Bay. Events with similar time and frequency domain characteristics also occur at locations away from calving fronts, but less often, and their mechanical origin remains undetermined. Automated detections from a frequency domain event detector exhibit strong correlation with the handpicked time series, and extend our analysis to all available data collected during 2006. We present the time distribution of several categories of icequakes and compare these distributions to environmental variables such as precipitation, temperature and tides to explore potential forcing for observed variability in icequake occurrence.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFMNS11A0155O
- Keywords:
-
- 0700 CRYOSPHERE (4540);
- 0720 Glaciers;
- 0776 Glaciology (1621;
- 1827;
- 1863)