Renormalization group calculation of the uniform susceptibilities in low-dimensional systems
Abstract
We analyse the one-dimensional (1D) and the two-dimensional (2D) repulsive Hubbard models (HM) for densities slightly away from half-filling through the behaviour of two central quantities of a system: the uniform charge and spin susceptibilities. We point out that a consistent renormalization group treatment of them can only be achieved within a two-loop approach or beyond. In the 1D HM, we show that this scheme reproduces correctly the metallic behaviour given by the well-known Luttinger liquid fixed-point result. Then, we use the same approach to deal with the more complicated 2D HM. In this case, we are able to show that both uniform susceptibilities become suppressed for moderate interaction parameters as one takes the system towards the Fermi surface. Therefore, this result adds further support to the interpretation that those systems are in fact insulating spin liquids. Later, we perform the same calculations in 2D using the conventional random phase approximation, and establish clearly a comparison between the two schemes.
- Publication:
-
Journal of Physics A Mathematical General
- Pub Date:
- June 2006
- DOI:
- arXiv:
- arXiv:cond-mat/0601197
- Bibcode:
- 2006JPhA...39.7977F
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons;
- Condensed Matter - Superconductivity
- E-Print:
- Second version. Contribution to the conference "Renormalization Group 2005", which took place in Helsinki, Finland