Advances in Shallow-Water, High-Resolution Seafloor Mapping: Integrating an Autonomous Surface Vessel (ASV) Into Nearshore Geophysical Studies
Abstract
The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds, and sea bed morphology in water depths less than 5-m. The ASV is a catamaran-based platform, 10 feet in length, 4 feet in width, and approximately 260 lbs in weight. The vehicle is operated remotely through a wireless modem network enabling real-time monitoring of data acquisition. The ASV is navigated using RTK, and heave, pitch and roll are recorded with onboard motion sensors. Additional sensors, such as ADCPs, can also be housed within the vehicle. The ASV is able to operate in previously inaccessible areas, and will not only augment existing shallow-water research capabilities, but will also improve our understanding of the geologic controls to modern beach behavior and coastal evolution.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFMNS31B1574D
- Keywords:
-
- 1835 Hydrogeophysics;
- 1861 Sedimentation (4863);
- 3006 Marine electromagnetics;
- 3020 Littoral processes;
- 4217 Coastal processes