A Distributed Laboratory for Event-Driven Coastal Prediction and Hazard Planning
Abstract
The 2005 Atlantic hurricane season was the most active in recorded history. Collectively, 2005 hurricanes caused more than 2,280 deaths and record damages of over 100 billion dollars. Of the storms that made landfall, Dennis, Emily, Katrina, Rita, and Wilma caused most of the destruction. Accurate predictions of storm-driven surge, wave height, and inundation can save lives and help keep recovery costs down, provided the information gets to emergency response managers in time. The information must be available well in advance of landfall so that responders can weigh the costs of unnecessary evacuation against the costs of inadequate preparation. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program is a multi-institution collaboration implementing a modular, distributed service-oriented architecture for real time prediction and visualization of the impacts of extreme atmospheric events. The modular infrastructure enables real-time prediction of multi- scale, multi-model, dynamic, data-driven applications. SURA institutions are working together to create a virtual and distributed laboratory integrating coastal models, simulation data, and observations with computational resources and high speed networks. The loosely coupled architecture allows teams of computer and coastal scientists at multiple institutions to innovate complex system components that are interconnected with relatively stable interfaces. The operational system standardizes at the interface level to enable substantial innovation by complementary communities of coastal and computer scientists. This architectural philosophy solves a long-standing problem associated with the transition from research to operations. The SCOOP Program thereby implements a prototype laboratory consistent with the vision of a national, multi-agency initiative called the Integrated Ocean Observing System (IOOS). Several service- oriented components of the SCOOP enterprise architecture have already been designed and implemented, including data archive and transport services, metadata registry and retrieval (catalog), resource management, and portal interfaces. SCOOP partners are integrating these at the service level and implementing reconfigurable workflows for several kinds of user scenarios, and are working with resource providers to prototype new policies and technologies for on-demand computing.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFMIN33B1334B
- Keywords:
-
- 0525 Data management;
- 0530 Data presentation and visualization;
- 1622 Earth system modeling (1225);
- 1635 Oceans (1616;
- 3305;
- 4215;
- 4513)