Soil Biota and Litter Decay in High Arctic Ecosystems
Abstract
Frost heave action contributes to the formation of non-sorted circles in the High Arctic. Non-sorted circles tend to heave more than the surrounding tundra due to deeper thaw and the formation of ice lenses. Thus, the geomorphology, soils and vegetation on the centers of the patterned-ground feature (non-sorted circles) as compared to the surrounding soils (inter-circles) can be different. We established a decomposition experiment to look at in situ decay rates of the most dominant graminoid species on non-sorted circles and adjacent inter-circle soils along a climatic gradient in the Canadian High Arctic as a component of a larger study looking at the biocomplexity of small-featured patterned ground ecosystems. Additionally, we investigated variation in soil chemical properties and biota, including soil microarthropods and microbial composition and biomass, as they relate to climate, topographic position, and litter decay rates. Our three sites locations, from coldest to warmest, are Isachsen, Ellef Ringnes Island (ER), NU (bioclimatic subzone A); Mould Bay (MB), Prince Patrick Island, NT (bioclimatic subzone B), and Green Cabin (GC), Aulavik National Park, Thomsen River, Banks Island, NT (bioclimatic subzone C). Our sample design included the selection of 15 non-sorted circles and adjacent inter-circle areas within the zonal vegetation at each site (a total of 90 sites), and a second set of 3 non-sorted circles and adjacent inter-circle areas in dry, mesic and wet tundra at each of the sites. Soil invertebrates were sampled at each site using both pitfall traps, soil microbial biomass was determined using substrate induced respiration and bacterial populations were determined using the most probable number method. Decomposition rates were measured using litterbags and as the percent of mass remaining of Carex misandra, Luzula nivalis and Alopecuris alpinus in GC, MB and ER, respectively. Our findings indicate these graminoid species decayed significantly over time at a rate of 10-15 % mass loss / yr during the first year of decay. Decay rates are different in non-sorted circles vs. inter-circle soils along the climatic gradient. In MB, L. nivalis seems to decay faster in the inter-circle soils than in non-sorted circles (0.05 <P <0.10); while no differences in the decay of C. misandra were found at GC. Microbial biomass is higher in inter-circle soils than in non-sorted circles along the gradient; while the total density of microarthropod did not differ between positions at MB.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.C51A0393G
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling (0412;
- 0793;
- 1615;
- 4805;
- 0439 Ecosystems;
- structure and dynamics (4815);
- 0475 Permafrost;
- cryosphere;
- and high-latitude processes (0702;
- 0716);
- 0702 Permafrost (0475);
- 0718 Tundra (9315)