A note on multiple Seshadri constants on surfaces
Abstract
We give a bound for the multiple Seshadri constants on surfaces with Picard number 1. The result is a natural extension of the bound of A. Steffens for simple Seshadri constants. In particular, we prove that the Seshadri constant $\epsilon(L; r)$ is maximal when $rL^2$ is a square.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- December 2005
- DOI:
- arXiv:
- arXiv:math/0512147
- Bibcode:
- 2005math.....12147F
- Keywords:
-
- Mathematics - Algebraic Geometry;
- 14C20;
- 14J60
- E-Print:
- 4 pages