On the Hodge conjecture for products of certain surfaces
Abstract
In this paper we prove the Hodge conjecture for products of the form $S_1 \times ... S_n$, where $S_i$ are smooth projective surfaces such that $p_g(S_i)=1, q(S_i)=2$. We also prove the Hodge conjecture for arbitrary selfproducts of a K3 surface $X$ such that $End_{hodge}(T(X))$ is a CM number field.
 Publication:

arXiv Mathematics eprints
 Pub Date:
 May 2005
 DOI:
 10.48550/arXiv.math/0505357
 arXiv:
 arXiv:math/0505357
 Bibcode:
 2005math......5357R
 Keywords:

 Algebraic Geometry