The Linear Boltzmann Equation as the Low Density Limit of a Random SCHRÖDINGER Equation
Abstract
We study the long time evolution of a quantum particle interacting with a random potential in the Boltzmann-Grad low density limit. We prove that the phase space density of the quantum evolution defined through the Husimi function converges weakly to a linear Boltzmann equation. The Boltzmann collision kernel is given by the full quantum scattering cross-section of the obstacle potential.
- Publication:
-
Reviews in Mathematical Physics
- Pub Date:
- 2005
- DOI:
- arXiv:
- arXiv:math-ph/0412044
- Bibcode:
- 2005RvMaP..17..669E
- Keywords:
-
- Quantum Boltzmann equation;
- Anderson model;
- Boltzmann-Grad limit;
- Lorentz gas;
- Mathematical Physics;
- Mathematics - Mathematical Physics;
- 81Q1;
- 81S30
- E-Print:
- 74 pages, 4 figures, (Final version -- typos corrected)