Electrical properties of polyaniline nanofibre synthesized with biocatalyst
Abstract
Polyaniline (PANI) nanofibres were synthesized using a biocatalyst (recombinant Coprinus cinereus peroxidase) instead of toxic chemical oxidants. Relatively uniform nanofibres with 50-100 nm diameter were easily obtained with this method, and the doping state of the PANI nanofibre could be controlled either with 1N camphorsulfonic acid (CSA) or with 30% NH4OH. Doped (or dedoped) PANI nanofibres were deposited on pre-patterned Au electrodes for electrical characterization. Completely dedoped PANI behaves as an insulator, while a larger current, by more than four orders of magnitude, was observed from doped PANI nanofibres. A weak p-type gate effect was observed for PANI nanofibre devices as well. As one could expect from the easy doping nature of PANI, PANI nanofibre devices show high sensitivity toward dedoping (NH3) gases, thereby demonstrating the possibility of using enzyme-synthesized PANI nanofibre devices as sensitive chemical sensors.
- Publication:
-
Nanotechnology
- Pub Date:
- August 2005
- DOI:
- Bibcode:
- 2005Nanot..16.1177K