Full Vector Analyses of Cryptochron C2r.2r-l (ca. 2.42-2.44 Ma) Recorded on Koolau Volcano at Halawa, Oahu, Hawaii: Evidence From Directions, Absolute Paleointensity Determinations and 40Ar/39Ar Studies.
Abstract
New paleomagnetic measurements (directions and paleointensity determinations), coupled with precise 40Ar/39Ar radioisotopic dating, are revolutionizing our understanding of the geodynamo by providing detailed terrestrial lava records of the short-term behavior of the paleomagnetic field. As part of an investigation of the evolution of Koolau Volcano (one of the volcanoes comprising Oahu Island) and the short-term behavior of the geomagnetic field, we have sampled a long volcanic section located on the buttressed flank of the volcano within Halawa Valley. Prior paleomagnetic and K-Ar investigations of the Koolau (Volcano) Series revealed excursional directions (Site F of Doell and Dalrymple, 1973). The alkaline composition of lava flows, easy access, and close geographical proximity to K-Ar dated lava flows made this newly studied 120 m thick sequence of flows in Halawa valley an excellent candidate for detailed paleomagnetic analysis. At least eight samples collected from each of 28 successive flow-sites were stepwise demagnetized by both alternating field (5mT to 100mT) and thermal (from 28o C to 575-650oC) methods, and the mean directions obtained by principal component analysis. All samples yielded a strong and stable ChRM trending towards the origin based on no less than seven to nine steps, with thermal and AF results agreeing to a very high degree. Low field susceptibility versus temperature (k-T) analyses were conducted for individual lava flows, and the majority of them show reversible curves. Curie point determinations revealed a temperature close to or equal to 580oC, indicative of almost pure magnetite for most of the flows. Magnetic grain sizes analysis indicated SD-PSD sizes. The mean directions of magnetization of the entire section sampled indicate that about 10 m of the section are characterized by excursional directions (5 lava flows). In addition to the directional analyses we performed absolute paleointensity determinations on the 28 lavas sampled. We used the modified Thellier-Coe double heating method to determine paleointensities. pTRM checks were performed systematically one temperature step down the last pTRM acquisition in order to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50o C between room temperature and 500oC and every 25-30o C. The paleointensity determinations were obtained from the slope of the Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range of temperatures lower than 300oC unless a clear and unique slope would be present. Our paleointensity results indicate a near-zero reduced strength of the field during the excursional period ranging from 5 to 9 micro-Tesla. The corresponding VGPs are located off the southeast part of Africa, close to Madagascar. Initial 40Ar/39Ar incremental heating experiments on groundmass from nine flow-sites located at different stratigraphic levels yielded isochron ages ranging from 2.64+/-0.25 to 2.40+/-0.46 Ma indicating that the excursion may correlate with the C2r.2r-l Cryptochron of Cande and Kent [1995]. this is potentially the first terrestrial record of the ca. 2.4 Ma Cryptochron, a finding that will place important constraints on evolution of the entire Koolau shield edifice also.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFMGP21A0017B
- Keywords:
-
- 1513 Geomagnetic excursions;
- 1530 Rapid time variations;
- 1535 Reversals: process;
- timescale;
- magnetostratigraphy;
- 1560 Time variations: secular and longer