Extreme Spatial Variability in Microbial Mat Communities from Submarine Hydrothermal Vents Located at Multiple Volcanoes along the Mariana Island Arc
Abstract
Volcanic arc systems are the most active tectonic feature in the world, but are among the least studied. The Western Pacific contains ~20,000 km of volcanic arcs, of which only ~2% have been systematically surveyed. The lack of comprehensive knowledge of volcanic arcs is compounded by the incredible variability found in relatively short distances. The complex source history of hydrothermal fluids and the variable depths of seamounts found in island arc systems result in highly variable vent chemistries and therefore unique microbial habitats within relatively short distances. The Mariana Island Arc was surveyed in 2003 and areas with suspected hydrothermal activities were identified for targeted remote operating vehicle (ROV) exploration and sampling in 2004. Sixteen microbial mat samples from five seamounts ranging from 145-1742 mbsl and from ambient to 222°C were collected and analyzed with quantitative PCR (Q-PCR), cluster analysis of terminal restriction length polymorphism (T-RFLP) community fingerprints, and by clone library analysis of small subunit ribosomal rDNA genes. The microbial mat communities from the Mariana Island Arc exhibit greater spatial variability within their community structure than microbial mats sampled from mid-ocean ridge or hotspot hydrothermal vents from a comparable scale. Microbial communities from the summit of NW Eifuku Volcano are dominated by putative iron-oxidizing phylotypes at the Yellow Top and Yellow Cone Vent sites, but are dominated by sulfur-oxidizing ɛ-Proteobacteria at the Champagne Vent site. Mats collected at the Mat City Vent site on E Diamante Seamount contained nearly three times as much biomass as any other mat sample collected, and is dominated by a Planctomyces phylotype. Hydrothermal sediments at the Fish Spa site located on Daikoku Seamount contained the second highest biomass detected and supported a large community of flatfish indicating a direct route for biomass being channeled up the food chain. The microbial community at Fish Spa consists of a highly diverse assemblage of Bacteroidetes, α-Proteobacteria and Firmicutes. While in contrast, the microbial mat at the Iceberg Vent site on NW Rota I is dominated by a single phylotype of ɛ-Proteobacteria.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.V51C1509D
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics (4815);
- 0448 Geomicrobiology;
- 0450 Hydrothermal systems (1034;
- 3017;
- 3616;
- 4832;
- 8135;
- 8424);
- 0463 Microbe/mineral interactions;
- 0465 Microbiology: ecology;
- physiology and genomics (4840)