Convection-pulsation coupling. I. A mixing-length perturbative theory
Abstract
We present in details a time-dependent convection treatment in the frame of the Mixing-Length Theory (MLT). Following the original ideas by Unno (1967, PASJ, 19, 140), this theory has been developed by Gabriel et al. (1974, Bull. Ac. Roy. Belgique, Classe des Sciences, 60, 866) and Gabriel (1996, Bull. Astron. Soc. India, 24, 233). In this paper, we present it in a united form, we detail the basic derivations and approximations and give final improvements. A new perturbation of the energy closure equation is proposed for the first time, making it possible to avoid the occurrence of short wavelength spatial oscillations of the thermal eigenfunctions. This theory accounts for the perturbation of the convective flux, the turbulent Reynolds stress and the turbulent kinetic energy dissipation. It has been numerically implemented in a non-radial non-adiabatic pulsation code and the first results published in a Letter by Dupret et al. (2004a, A&A, 414, L17) indicate that the theory predicts the observed red border of the lower end of the instability strip and the driving mechanism of the recently discovered γ Dor stars.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- May 2005
- DOI:
- Bibcode:
- 2005A&A...434.1055G
- Keywords:
-
- stars: oscillations;
- convection;
- stars: interiors