A ground state alternative for singular Schrödinger operators
Abstract
Let $\mathbf{a}$ be a quadratic form associated with a Schrödinger operator $L=-\nabla\cdot(A\nabla)+V$ on a domain $\Omega\subset \mathbb{R}^d$. If $\mathbf{a}$ is nonnegative on $C_0^{\infty}(\Omega)$, then either there is $W>0$ such that $\int W|u|^2 dx\leq \mathbf{a}[u]$ for all $C_0^{\infty}(\Omega;\mathbb{R})$, or there is a sequence $\phi_k\in C_0^{\infty}(\Omega)$ and a function $\phi>0$ satisfying $L\phi=0$ such that $\mathbf{a}[\phi_k]\to 0$, $\phi_k\to\phi$ locally uniformly in $\Omega\setminus\{x_0\}$. This dichotomy is equivalent to the dichotomy between $L$ being subcritical resp. critical in $\Omega$. In the latter case, one has an inequality of Poincaré type: there exists $W>0$ such that for every $\psi\in C_0^\infty(\Omega;\mathbb{R})$ satisfying $\int \psi \phi dx \neq 0$ there exists a constant $C>0$ such that $C^{-1}\int W|u|^2 dx\le \mathbf{a}[u]+C|\int u \psi dx|^2$ for all $u\in C_0^\infty(\Omega;\mathbb{R})$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2004
- DOI:
- arXiv:
- arXiv:math/0411658
- Bibcode:
- 2004math.....11658P
- Keywords:
-
- Analysis of PDEs;
- Spectral Theory;
- 35J10 (Primary);
- 35J20;
- 35J70;
- 49R50 (Secondary)
- E-Print:
- 14 pages