The radio waves & thermal electrostatic noise spectroscopy (SORBET) experiment on BepiColombo/MMO/PWI and the importance of radio HF measurements at Mercury
Abstract
SORBET (Spectroscopie des Ondes Radio & du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in-situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5 kHz - 640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500kHz-10.2MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives:
High resolution mapping (∼ 30 km) of electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. It is noteworthy that the QTN technique is weakly sensitive to spacecraft potential and photoelectron perturbations, a point highly in favour of this technique at Mercury. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O ...) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to ∼ 10-20 kHz) from mildly energetic electrons in highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to ~10 MHz, in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We propose to further discuss these scientific objectives and to underline that such radio HF measurements are a clue for understanding the structure and dynamics (regions, boundaries, acceleration, dissipation processes ...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind.- Publication:
-
35th COSPAR Scientific Assembly
- Pub Date:
- 2004
- Bibcode:
- 2004cosp...35.2394M