ISS Observations of the Trapped Proton Anisotropic Effect: A Comparison with Model Calculations
Abstract
Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Unit (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during 2001. Four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). Space radiation flight measurements were obtained during the time period May 11 - July 26, 2001. In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the development of a shielding model using combinatorial geometry and 3-D visualization and the orientation and placement of the five detectors at the locations within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton anisotropy (East-West effect) was computed for the individual passes through the South Atlantic Anomaly based on the Badhwar-Konradi anisotropy model.
- Publication:
-
35th COSPAR Scientific Assembly
- Pub Date:
- 2004
- Bibcode:
- 2004cosp...35.1656D