Carbon-nanotube based nano-electro-mechanical oscillators
Abstract
We report on the fabrication and performance of nanometer-scale electromechanical oscillators which use multi-walled carbon nanotubes as torsional springs. Carbon nanotube devices may offer high quality factors due to the inert surface of the torsional member, and high sensitivity due to their nanoscale dimensions. They also provide a means to study the effects of torsion on nanotube transport. The devices have a paddle-oscillator geometry and are driven electrostatically. In previous work we manipulated these devices directly with a scanning probe to measure the torsional properties of the nanotube, its shear modulus, and its subsequent stiffening under repeated strain [1]. Here we use both optical and electron-beam techniques to measure the response of the devices to applied voltages. We demonstrate both quasi-static and on-resonance performance characteristics. 1. P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn, and R. Superfine, Phys. Rev. Lett. 89, 255502 (2002).
- Publication:
-
APS March Meeting Abstracts
- Pub Date:
- March 2004
- Bibcode:
- 2004APS..MARW16015P